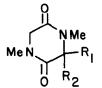

BICYCLOMYCIN SYNTHETIC STUDIES: UTILIZATION OF BRIDGEHEAD CARBANIONS

Robert M. Williams Department of Chemistry, Colorado State University Fort Collins, Colorado 80523

<u>Summary</u>: The synthesis of a bicyclomycin model compound (<u>19</u>) has been achieved utilizing an efficient hydroxylation of a simple bicyclic bridgehead carbanion.

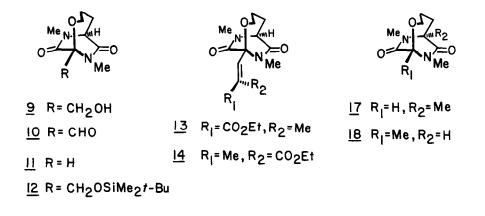
Bicyclomycin <u>1</u>, an antibiotic recently discovered by two groups,¹ was obtained from cultures of <u>Streptomyces</u> <u>Sapporonensis</u>. Bicyclomycin possesses a unique chemical structure and exhibits a unique mechanism of antibacterial action; no relation being noted to any groups of the known antibiotics.²

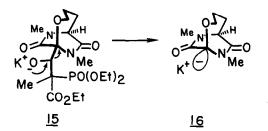

As part of a program directed toward the total synthesis of bicyclomycin, we wish to report a synthetic approach utilizing an efficient bridgehead anion oxidation reaction to construct the bicyclomycin ring system.

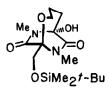
Readily available³ 1,4-dimethyl-3-formyl-2,5-piperazinedione (2) was converted into the protected 3-hydroxymethyl-3-methoxy-piperazinedione <u>6</u> in four straightforward steps: 1) 1.1 equiv toluenesulfenyl chloride/Et₃N/THF,-78°C (quant. to yield $\underline{3}^4$); 2) 1.3 equiv LiAl(t-BuO)₃H/THF,-78°C (90% yield of $\underline{4}^4$); 3) 1.1 equiv Hg(OAc)₂/MeOH, 25°C, 12h (92% yield of $\underline{5}^4$); 4) t-BuMe₂SiCl/DMF / imidazole, 25°C affords $\underline{6}^4$ in 81% overall yield from 2.

Reaction of <u>6</u> with 1.3 equiv LDA in THF at -78° C followed by quenching the enolate with 2 equiv HMPA and 2.4 equiv t-butyldimethylsiloxy-3-iodopropane furnished a mixture of diastereomers <u>7</u>⁴ in 64% combined yield (isolated on a silica gel flash column; eluted with 5% MeOH in CH₂Cl₂). Removal of both silyl protecting groups from the diastereomers <u>7</u> with 2 equiv tetran-butyl ammonium flouride in THF at 25°C afforded the diastereomeric diols <u>8</u>⁴ in 83% yield. Refluxing the mixture of diastereomers <u>8</u> in acetonitrile in the presence of camphorsulfonic acid⁵ furnished a single bicyclic hydroxymethylpiperazinedione 9⁶, ⁷ in 75% yield.

We envisioned that the four-carbon poly-oxo side chain of bicyclomycin could be elaborated from the carboxaldehyde⁸ derived from the hydroxymethyl moiety, such as that present in $\underline{9}$.




 $\frac{2}{3} = R_1, R_2 = CHOH$ $\frac{3}{3} = R_1 = CHO, R_2 = S - - Me$ $\frac{4}{3} = R_1 = CH_2OH, R_2 = S - - Me$


 $5 R_1 = CH_2OH, R_2 = OMe$

- - <u>7</u> R=SiMe₂*t*-Bu 8 R=H

 $\underline{6}$ R₁= CH₂OSiMe₂t-Bu, R₂=OMe

Thus, Swern⁹ oxidation of <u>9</u> (DMSO, oxalyl chloride, CH_2Cl_2 , Et_3N) cleanly afforded the labile aldehyde <u>10</u>⁴ in virtually quantitative yield (IR: 1745, 1665 cm⁻¹; NMR (CDCl₃) & 9.67, 1H,s, RCHO). Reaction of <u>10</u> with (EtO)₂POCH(CH₃)CO₂Et and t-BuOK in THF provided a 1:1.3/E:Z mixture of olefins <u>13</u>⁴ and <u>14</u>⁴ (33% combined yield) and quite surprisingly, deformylated derivative <u>11</u>¹⁰ (34%). This unexpected deformylation must result from the collapse of the intermediate oxyanion addition product (<u>15</u>) of the Horner-Emmons reagent and aldehyde <u>10</u>, expelling bridgehead carbanion <u>16</u>, which is then protonated upon work-up to furnish <u>11</u>.

The structure of 11^{10} was confirmed by comparison to an authentic sample prepared from 3 in five steps: 1) 0.1 N NaOH/THF provides 20; 2)1.1 equiv Hg(OAc)₂/MeOH provides 21; 3)1.2 equiv LDA/THF, -78°C followed by addition of 3 equiv allyl bromide provides 22; 4) B₂H₆/THF, then 1 N NaOH/30% H₂O₂ provides 23; 5) camphorsulfonic acid/ acetonitrile, reflux affords <u>11</u> in 13% overall yield from 3.

 $\begin{array}{c} \underbrace{20}_{R_{1}} \text{R}_{2} \text{Me}, R_{2} \text{H} \\ R_{2} \text{Me} \\ MeN \text{H}_{R_{1}} \\ 0 \end{array} \begin{array}{c} \underbrace{21}_{R_{1}} \text{R}_{1} \text{OMe}, R_{2} \text{H} \\ \underbrace{22}_{R_{1}} \text{R}_{1} \text{OMe}, R_{2} \text{CH}_{2} \text{CH}_{2} \text{CH}_{2} \text{CH}_{2} \\ \underbrace{23}_{R_{1}} \text{R}_{1} \text{OMe}, R_{2} \text{H} \end{array}$

This unexpected deformylation reaction prompted us to investigate the bridgehead carbanion chemistry¹¹ of <u>11</u> and <u>12</u>. Treatment of <u>11</u> with 1.3 equiv t-butyllithium in THF at -78°C, followed by quenching with 5 equiv CH₃I afforded <u>17</u>⁴ as the major product plus a small amount of <u>18</u>⁴ (3:1, respectively, 54% combined based on recovered <u>11</u>). The preponderance of <u>17</u> formed indicates that for <u>11</u> the methine proton adjacent to the methylene is slightly more acidic than the methine adjacent to the ether-oxygen; neither proton exchanges (3 days) in CD₃OD containing 1 equiv NaOMe.

Thus, conversion of <u>9</u> into the corresponding silyl ether <u>12</u>⁴ was accomplished in the standard manner (t-BuMe₂SiCl/DMF/imidazole, quant.). Treatment of <u>12</u> with 1.5 equiv t-butyl-lithium in THF at -78°C, followed by addition of MoOPH¹² afforded bicyclomycin model <u>19</u>¹³ in 62% yield (48% conversion).

Synthesis of <u>19</u> constitutes the first successful approach to a piperazinedione nucleus bearing the substitution pattern present in the bicyclomycin ring system. Application of these strategies to a total synthesis of bicyclomycin is currently under investigation in these laboratories.

<u>Acknowledgement</u>: We gratefully acknowledge CSU Biomedical Research Support Grant (NIH)#537238 and the Department of Chemistry, Colorado State University for Financial Support of this work. Technical assistance from R. Armstrong, H. Meyers, J. Bremer and D. Page is gratefully acknowledged.

REFERENCES AND FOOTNOTES

- T. Miyoshi, N. Miyairi, H. Aoki, M. Kohsaka, H. Sakai, and H. Imanaka, J. Antibiotics, 25, 569 (1972); T. Kamiya, S. Maeno, M. Hashimoto, Y. Mine, ibid, 25, 576 (1972); M. Nishida, Y. Mine, and T. Matsubara, ibid, 25, 582 (1972); M. Nishida, Y. Mine, T. Matsubara, S. Goto, and S. Kuwahara, ibid, 25, 594 (1972); S. Miyamura, N. Ogasawara, H. Otsuka, S. Niwayama, H. Tanaka, T. Take, T. Uchiyama, H. Ochiai, K. Abe, K. Koizumi, K. Asao, K. Matsuki, and T. Hoshino, ibid, 25, 620 (1972); S. Miyamura, N. Ogasawara, H. Otsuka, S. Niwayama, H. Tanaka, T. Take, T. Uchiyama, and H. Ochiai, ibid, 26, 479 (1973).
- A. Someya, M. Iseki, and N. Tanaka, <u>J. Antibiotics</u>, <u>31</u>, 712 (1978); N. Tanaka, M. Iseki, T. Miyoshi, H. Aoki, and H. Imanaka, <u>ibid</u>, <u>29</u>, 155 (1976).
- 3. R. M. Williams and W. H. Rastetter, J. Org. Chem., 45, 2625 (1980).
- 4. Satisfactory spectroscopic data (nmr, ir, ms) were obtained for all compounds.
- This cyclisation procedure is similar to that reported by H. Maag, Abstract #347 2nd Chemical Congress of the North American Continent, Division of Organic Chemistry Las Vegas, Nevada, August 1980; see also H. Maag, J. F. Blount, D. L. Coffen, T. J. Steppe, and F. Wong, J. Am. Chem. Soc., 100, 6786 (1978).
- 6. Both diastereomers (8) are capable of furnishing the same product 9, since when they are subjected to the cyclisation conditions separately (separated on PTLC silica gel using 89 parts $CH_2Cl_2/9$ parts MeOH/1 part NH_4OH), 9 is obtained from each in good yield.
- 7. Data for <u>9</u>: NMR (CDCl₃) & TMS: 1.6-1.85(2H,m); 2.08-2.8(2H,m); 2.42(1H,dd,J_{ax} = 9.0 Hz,J_{bx} = 6.0Hz, D₂O exch.); 3.00(3H,s); 3.10(3H,s); 3.27-3.85(2H,m); 3.78(1H,dd,J_{ax} = 9.0Hz,J_{ab} = 12.5Hz); 4.10(1H,t,J = 4.5Hz); 4.37(1H,dd,J_{bx} = 6.0Hz,J_{ab} = 12.5Hz); MS:m/e = 228(M⁺, 37.9%), 198(29.8), 170(26.7), 113(100); IR (NaCl, neat): 3400(broad) 1660, 1455, 1385cm⁻¹.
- Synthesis and chain elongation of a corresponding carboxaldehyde derived from bicyclomycin has been described: B. W. Müller, O. Zak, W. Kump, W. Tosch, and O. Wacker, <u>J. Antibiotics</u>, <u>32</u>, 689 (1979).
- 9. A. J. Mancuso, S-L. Huang, and D. Swern, J. Org. Chem., 43, 2480 (1978).
- 10. Data for <u>11</u>: NMR(CDCl₃) δ TMS: 1.73(2H,m); 2.14(2H,m); 2.97(3H,s); 3.03(3H,s); 3.3-3.9 (2H,m); 4.04(1H,t,J = 3Hz); 5.12(1H,s); MS:m/e = 198(M⁺, 57%); 140(19.5); 32(100); IR(NaCl, neat): 1660, 1480, 1405, 1390, 1300, 1258, 1245cm⁻¹.
- 11. For related bicyclic piperazinedione dithioacetal stabilized (sulfur-stabilized) bridgehead carbanions, see Y. Kishi, T. Fukuyama, and S. Nakatsuka, J. Am. Chem. Soc., 95, 6490 (1973).
- 12. MoOPH = Oxodiperoxymolybdenum (hexamethylphosphorictriamide) (pyridine); E. Vedejs and J. E. Telschow, <u>J. Org. Chem.</u>, <u>41</u>, 740 (1976).
- 13. Data for 19: NMR (CDCl₃) & TMS: 0.02(6H,s); 0.83(9H,s); 1.4+1.8(2H,m); 1.8-2.5(2H,m); 3.03 (3H,s); 3.16(3H,s); 3.4-4.1(2H,m); 3.72(1H, ¹₂ABq, J = 11Hz); 4.56(1H, ¹₂ABq, J = 11Hz); 4.70 (1H, broad s, D₂0 exch.); MS m/e = 358(M⁺, 0.83%), 343(2.66), 301(71.87), 84(100); IR(NaCl, neat): 3380 (broad), 1668, 1380, 1110 cm⁻¹.

(Received in USA 25 March 1981)